DUGD-JS 64-0143

THE THERMODYNAMIC PROPERTIES OF SOLID AND FLUID HELIUM-3 AND HELIUM-4 ABOVE 3 °K AT HIGH DENSITIES

By J. S. DUGDALE AND J. P. FRANCK[†]

Division of Pure Physics, National Research Council, Ottawa, Canada

(Communicated by G. Herzberg, F.R.S.-Received 14 October 1963)

CONTENTS

		PAGE		PAGE
1.	INTRODUCTION	1	3.4. The fluid range	14
2.	EXPERIMENTAL	3	3.5. The thermal energy and entropy	15
	2.1. The calorimeter2.2. Temperature scale	3 5	3.6. Calculation of related thermodynamic properties	16
	2.3. Gas handling and operation	6	4. DISCUSSION	21
	2.4. Determination of molar volume and mass of sample	7	4.1. The specific heat of solid helium 4.2. Energy relations in solid helium at	21
3.	EXPERIMENTAL RESULTS	9	0 °K	25
	3.1. Specific heat of solid helium	9	4.3. The fluid helium isotopes	27
	3.2. The melting range	11	Conclusions	27
	formation in solid ⁴ He and ³ He	13	References	28

Measurements have been made of the specific heat at constant volume of solid ³He from 3 $^{\circ}$ K up to the melting point at a number of different densities corresponding to pressures up to 2000 atm. The measurements have been extended through the melting region at constant volume up to 29 $^{\circ}$ K in the fluid phase. For comparison similar measurements have been made on ⁴He at four different densities.

By combining these data with the p-V-T data of Mills & Grilly (1955) and Grilly & Mills (1959), the complete thermodynamic properties of the solids have been derived in the relevant pressure and temperature range. The results can be understood semi-quantitatively in terms of the zeropoint energy of the solids and a quasi-harmonic model of the lattice vibrations. A brief discussion of the specific heat of the fluid phase is also given.

1. INTRODUCTION

Simon (1934) first drew attention to the importance of zero-point energy in interpreting the properties of solid and liquid helium. If helium behaved classically, it would exist as a solid in equilibrium with its vapour at the lowest temperatures with a molar volume of about 10 cm³ and a latent heat of sublimation of about 150 cal/mole; all this can be readily deduced from the properties of the gas phase at higher temperatures. In fact experiment shows that solid ⁴He is *not* in equilibrium with the vapour phase at *any* temperature and that at the lowest temperatures it exists in equilibrium with the liquid under a pressure of about ²⁵ atm. Its molar volume under these conditions is more than 20 cm³ and its internal energy

† Now at the Department of Physics, University of Alberta, Edmonton, Canada.

Phil, Trans, Roy, Soc. London Vol. 257. A. 1076. (Price 10s. 6d.; U.S. \$1.55)

-29

[Published 19 November 1964